LED18 series

- Mid-IR LED Series
- 1.80 1.89 μm
- 0.7 1.1 mW QCW

Description

LED18 series contain one LED chip die with a typical peak wavelength of **1.85** μ m, an optical power of typ. **0.9** mW QCW. There are different options of packaging available, as you can choose between TO-can, with parabolic reflector (R), window (W), and containing thermoelectric cooler and thermoresistor (T).

Maximum Ratings

Davamatav	Cumbal	Val	Unit	
Parameter	Symbol	Min.	Max.	Unit
Operating Current, QCW mode	IQCW max		250	mA
Operating Current, pulsed mode	IPULSE max		2	Α
Storage Temperature *	I STR	-60	+90	°C
Operating Temperature *	TCASE	-60	+90	°C
Lead Solder Temperature *2	T_{SLD}		+180	°C

^{*} Temperature range may vary for different packaging types

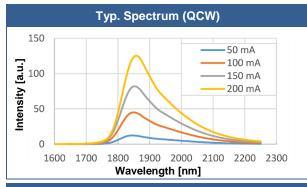
LED Characteristics

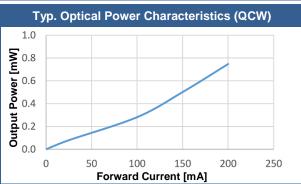
$(T_{CASE}=25^{\circ}C)$

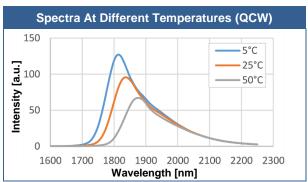
Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =150mA QCW	1.80		1.89	μm
Half Width (FWHM)	$\Delta \lambda$	I _F =150mA QCW	90		200	nm
Optical Output Power, QCW *	Po	QCW mode *	0.7	0.9		mW
Optical Output Power, pulsed *2	Po	Pulse mode *2	7	8.5		mW
Operating Voltage	V_{OP}	I _F =200mA QCW	0.5		2.5	V
Switching Time	t _s					ns

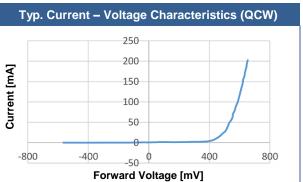
^{*} Repetition rate: 0.5 kHz, pulse duration: 1 ms, duty cycle: 50%, current: 200 mA

Packages

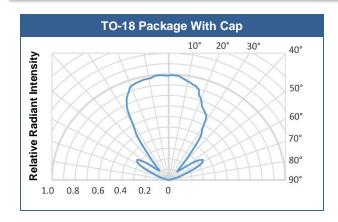

Part Number	Package			
LED18	TO-18 with cap with glass window			
LED18-R	TO-18 with parabolic reflector without glass window			
LED18-RW	TO-18 with parabolic reflector with glass window			
LED18-TW	D18-TW TO-5 with built-in thermocooler and thermoresistor, covered by cap with glass window			
LED18-TRW	TO-5 with built-in thermocooler and thermoresistor, covered by parabolic reflector with glass window			

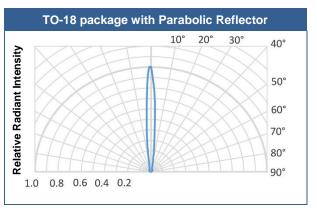

All parameters refer to LEDs in TO18 package with a cavity and operation at ambient temperature 25°C unless otherwise stated.


^{*2} must be completed within 5 seconds


^{*2} Repetition rate: 0.5 kHz, pulse duration: 20 μs, duty cycle: 1%, current: 1 A

Performance Characteristics

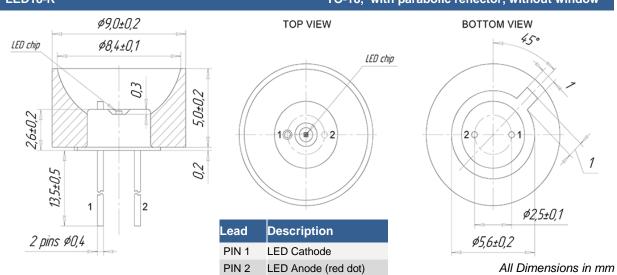




Radiant Characteristics (Far-Field Pattern)

Outline Dimensions

LED18 TO-18, with cap, with window Ø4,8±0,2 TOP VIEW **BOTTOM VIEW** LED chip 450 ø3,5±0,2 0,3 LED chip 4,1±0,2 13,5±0,5 \$2,5±0,1 Description Lead Ø5,6±0,2 PIN 1 2 pins \$0,4 LED Cathode


PIN 2

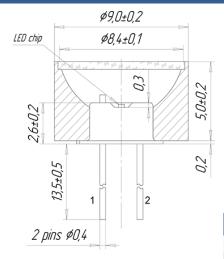
LED18-R

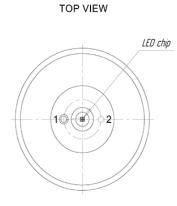
TO-18, with parabolic reflector, without window

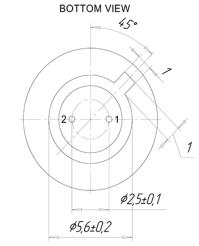
All Dimensions in mm

3

LED Anode (red dot)

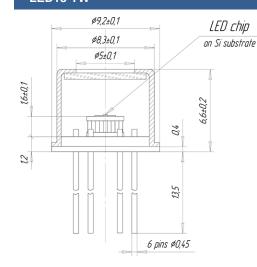

ROITHNER LASERTECHNIK GmbH

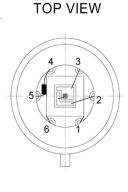

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44 OFFICE@ROITHNER-LASER.COM

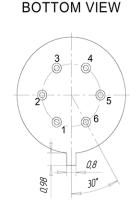

LED18-RW

TO-18, with parabolic reflector and window

LED Anode (red dot)


Lead Description
PIN 1 LED Cathode


PIN 2


All Dimensions in mm

LED18-TW

TO-5, thermocooler and thermoresistor, cap and window

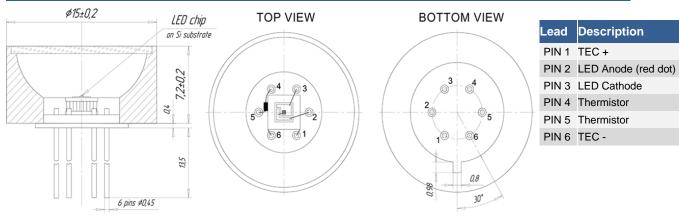
Lead Description

PIN 1 TEC +

PIN 2 LED Anode (red dot)

PIN 3 LED Cathode

PIN 4 Thermistor

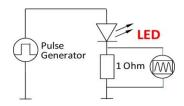

PIN 5 Thermistor

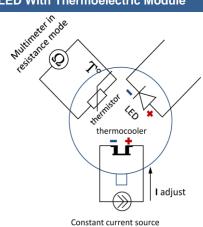
PIN 6 TEC -

All Dimensions in mm

LED18-TRW

TO-5, thermocooler and thermoresistor, cap and window

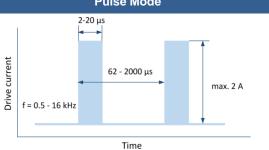



All Dimensions in mm

Operating Regime

LED Basic Circuit Connection

LED With Thermoelectric Module



We recommend to use **Quasi Continuous Wave (QCW) mode** with duty cycle 50% or 25% to obtain maximum average optical power and **Pulse mode** to obtain maximum peak power. Hard CW (continuous wave) mode is **NOT** recommended.

Quasi Continuous Wave (QCW) mode

f = 0.5 - 16 kHz Time

Pulse Mode

5

Precautions

Cautions:

- · Check your connection circuits before turning on the LED.
- Mind the LED polarity: LED anode is marked with a RED dot. Reverse voltage applying is FORBIDDEN!
- DO NOT connect the LED to the multimeter.
- Control the current applied to the LED in order not to exceed the maximum allowable values.

Soldering:

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- . Do not apply current to the LED until it has cooled down to room temperature after soldering

Static Electricity:

LEDs are **sensitive to electrostatic discharge (ESD)**. Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Revisions History

Rev.	Rel. Date	Chapter	Modification	Page
A1	2020-07-08	-	Initial release	-

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice