LED16 series

- Mid-IR LED Series
- 1.65 μm, >7 mW QCW

Description

LED16 series are fabricated from narrow band-gap GaInAsSb/AlGaAsS-based heterostructures lattice matched to GaSb substrate. This Mid-IR LEDs provide a typical peak wavelength of 1.65 μm, an optical power of typ. 9 mW QCW. There are different options of packaging available, as you can choose between TO-can, with parabolic reflector (R), window (W), and containing thermoelectric cooler and thermoresistor (T).

Maximum Ratings

Parameter	Symbol	Valu	Unit	
		Min.	Max.	Unit
Operating Temperature *1	TCASE	-60	+ 90	°C
Storage Temperature *1	T_{STG}	-60	+ 90	°C
Lead Solder Temperature *2	T_{SLD}		+ 180	°C

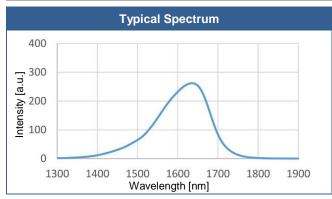
^{*1} Temperature range may vary for different packaging types.

LED Characteristics (TCASE=25°C)

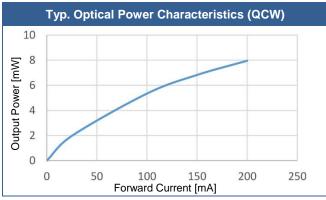
Parameter	Symbol	Conditions	Values			I I m i 4
			Min.	Тур.	Max.	Unit
Peak Wavelength	λ_P	I _F =25mA QCW *1	1.60		1.69	μm
Half Width (FWHM)	$\Delta \lambda$	I _F =25mA QCW *1	120		150	nm
Optical Output Power, QCW *	Po	I _F =200mA QCW *1	7	9		mW
Optical Output Power, pulsed *2	Po	I _F =1A Pulse *2	20	24		mW
	I _{QCW}	QCW Mode *1			200	mA
Operating Current	I _{pulse}	Pulse Mode *2			1	Α
	I_{DC}	DC Mode ^{⋆3}			100	mA
Operating Voltage	VOP	I _F =200mA QCW *1	0.7		1.1	V
Switching Time	ts					ns

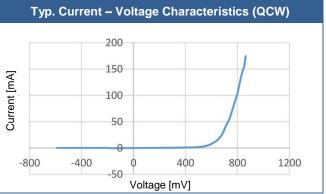
^{*1} repetition rate: 0.5 KHz, pulse duration: 1 ms, duty cycle: 50%.

Package Options

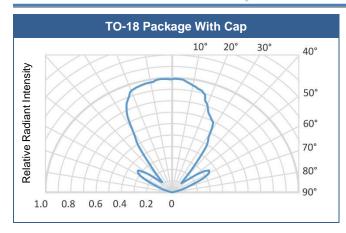

Part Number	Description
LED16	TO-18 with cap with glass window
LED16-R	TO-18 with parabolic reflector without glass window
LED16-RW	TO-18 with parabolic reflector with glass window
LED16-TW	TO-5 with built-in thermocooler and thermoresistor, covered by cap with glass window
LED16-TRW	TO-5 with built-in thermocooler and thermoresistor, covered by parabolic reflector with glass window

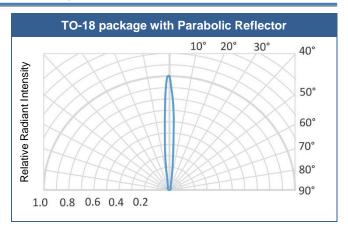

^{*2} must be completed within 5 seconds

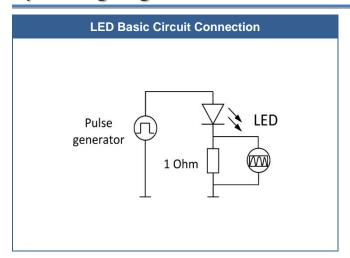

 $^{^{*2}}$ repetition rate: 0.5 KHz, pulse duration: 20 μ s, duty cycle: 1%.

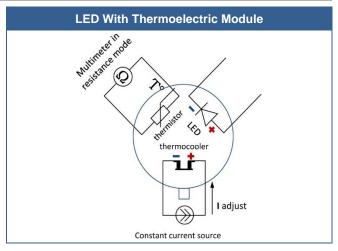

^{*3} repetition rate: direct current.

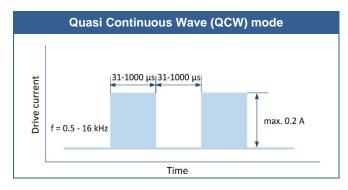
Performance Characteristics

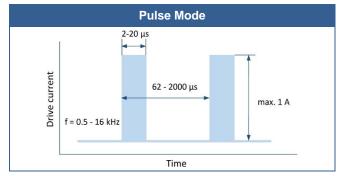




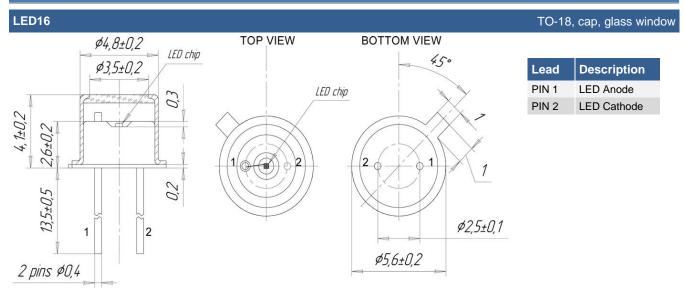



Radiant Characteristics (Far-Field Pattern)

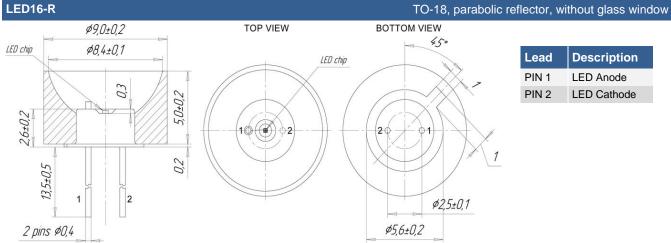



Operating Regime

We recommend using **Quasi Continuous Wave (QCW)** mode with duty cycle 50% or 25% to obtain maximum average optical power and **Pulse mode** to obtain maximum peak power.


3

Important Cautions:

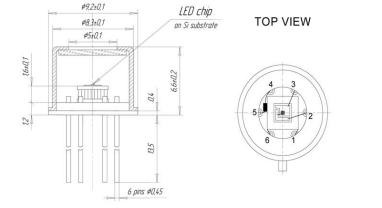

- Check your connection circuits before turning on the LED.
- Mind the LED polarity: LED anode is marked with a RED dot.
- Reverse voltage applying is FORBIDDEN!
- DO NOT connect the LED to the multimeter.
- Control the current applied to the LED in order not to exceed the maximum allowable values.

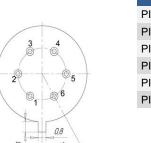

Outline Dimensions

All Dimensions in mm

All Dimensions in mm

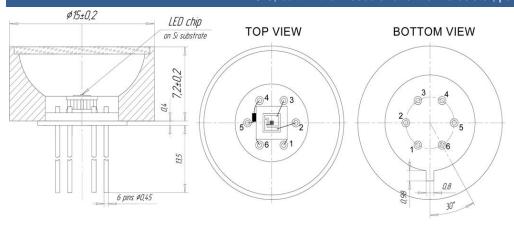
All Dimensions in mm


ROITHNER LASERTECHNIK GMBH


WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44 OFFICE@ROITHNER-LASER.COM

LED16-TW

TO-5 built-in thermocooler and thermoresistor, cap, glass window


BOTTOM VIEW

Lead	Description
PIN 1	TEC +
PIN 2	LED Anode
PIN 3	LED Cathode
PIN 4	Thermistor
PIN 5	Thermistor
PIN 6	TEC -

All Dimensions in mm

LED16-TRW

TO-5, built-in thermocooler and thermoresistor, parabolic reflector, glass window

Lead	Description
PIN 1	TEC +
PIN 2	LED Anode
PIN 3	LED Cathode
PIN 4	Thermistor
PIN 5	Thermistor
PIN 6	TEC -

All Dimensions in mm

Precautions

Soldering:

- · Do avoid overheating of the PD
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice