Rev. A1

SMB1N-D660N

- Red High Power LED
- 660 nm, 320 mW
- SMD package, PA9T
- Dimension: 5.0 x 5.2 x 1.0 mm
- Viewing Angle: 126°

Description

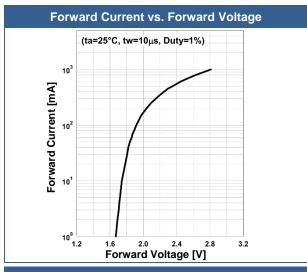
SMB1N-D660N is a surface mount AlGaInP High Power LED with a typical peak wavelength of **660 nm** and radiation of **320 mW**. It comes in SMD package (PA9T) with silver plated soldering pads (lead free solderable), copper heat sink, and molded with silicone resin.

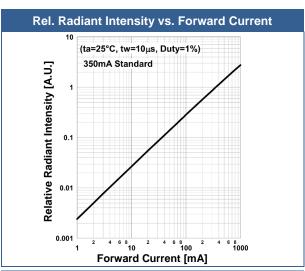
Maximum Ratings (TCASE=25°C)

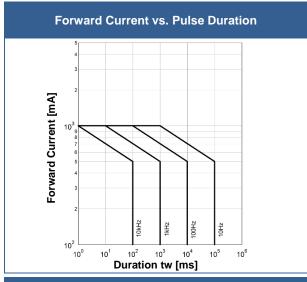
D		Val			
Parameter	Symbol	Min.	Max.	Unit	
Power Dissipation	P_D		1500	mW	
Forward Current	IF		500	mA	
Pulse Forward Current *1	I _{FP}		1000	mA	
Reverse Voltage	V _R		5	V	
Thermal Resistance	RTHJA		10	K/W	
Junction Temperature	T_J		120	°C	
Operating Temperature	T_{CASE}	- 40	+ 100	°C	
Storage Temperature	T _{STG}	- 40	+ 100	°C	
Lead Solder Temperature *2	T_{SLD}		+ 250	°C	

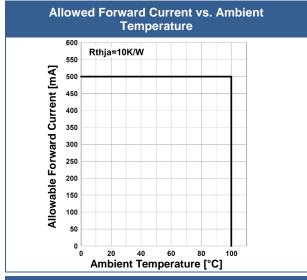
^{*1} duty=1%, pulse width = 10 µs

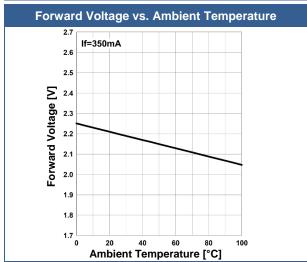
Electro-Optical Characteristics (TCASE=25°C)

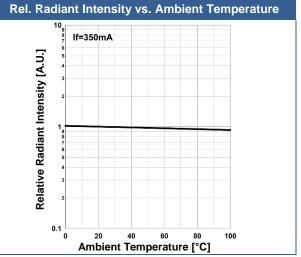

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =350mA	650		670	nm
Dominant Wavelength	λ_D	I _F =350mA		642		nm
Half Width	$\Delta \lambda$	I _F =350mA		17		nm
Compared Voltage	VF	I _F =350mA		2.2	3.0	V
Forward Voltage	V_{FP}	I _{FP} =1A		2.8		V
Radiated Power *1	Po	I _F =350mA		320		mW
Radiated Power		I _{FP} =1A		880		IIIVV
Dadient Intensity *2	lE	I _F =350mA		100		m2)///2 m
Radiant Intensity *2		I _{FP} =1A		290		mW/sr
Luminous Flux	$oldsymbol{\phi}_V$	I _F =350mA		27		lm
Viewing Angle	φ	I _F =100mA		126		deg.
Rise Time	<i>t</i> _R	I _F =350mA		70		ns
Fall Time	t⊧	I _F =350mA		50		ns

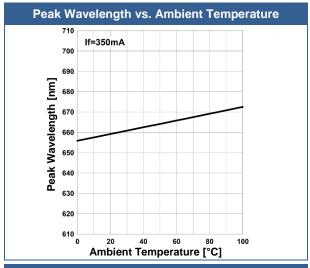

^{*1} measured by S3584-08

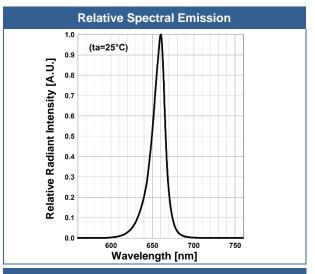

^{*2} must be completed within 5 seconds

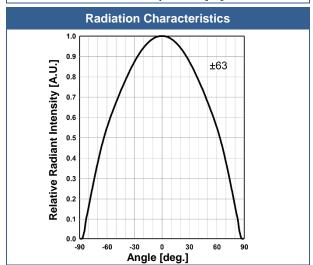

^{*2} measured by CIE127-2007 Condition B

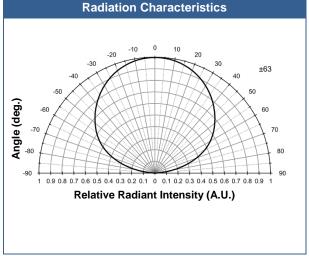

Typical Performance Curves







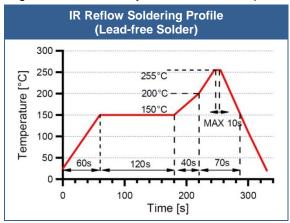

ROITHNER LASERTECHNIK GmbH

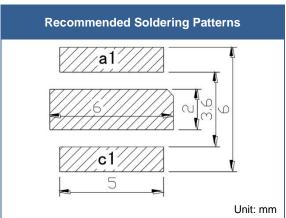

WIEDNER HAUPTSTRASSE 76 IO40 VIENNA AUSTRIA TEL. +43 I 586 52 43 -0, FAX. -44 OFFICE@ROITHNER-LASER.COM

Outline Dimensions

All Dimensions in mm

Precautions


Soldering:


- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, its reliability cannot be guarantee.

Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS

DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Revisions History

Rel	. Rel. Date	Chapter	Modification	Page
A1	2017-07-28	-	Initial release	-

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice