

SMB1N-760D

- Infrared High Power LED
- 760 nm, 400 mW
- SMD package, PA9T
- Dimension: 5.0 x 5.2 x 1.0 mm
- Viewing Angle: 128°

Description

Rev.1.3, 19.12.2018

SMB1N-760D is a surface mount AlGaInP High Power LED with a typical peak wavelength of **760 nm** and radiation of 400 mW. It comes in SMD package (PA9T) with silver plated soldering pads (lead free solderable), copper heat sink, and molded with silicone resin.

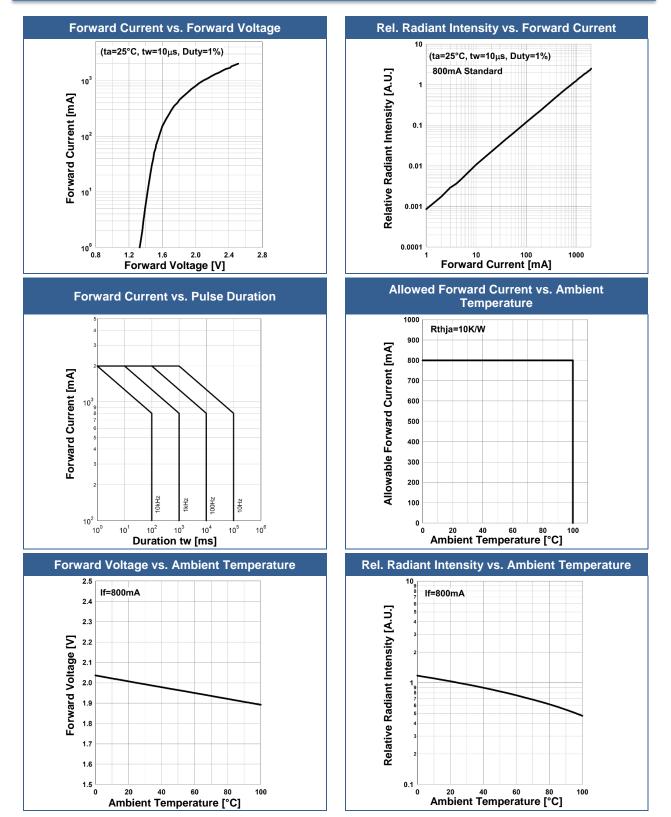
Maximum Ratings (T_{CASE}=25°C)

Parameter	Or much a l	Va		
	Symbol	Min.	Max.	Unit
Power Dissipation	PD		2000	mW
Forward Current	IF		800	mA
Pulse Forward Current *1	IFP		2000	mA
Reverse Voltage	VF		5	V
Thermal Resistance	Rthja		10	K/W
Junction Temperature	T_J		120	°C
Operating Temperature	TCASE	- 40	+ 100	°C
Storage Temperature	Tstg	- 40	+ 100	°C
Lead Solder Temperature *2	T _{SLD}		+ 250	°C

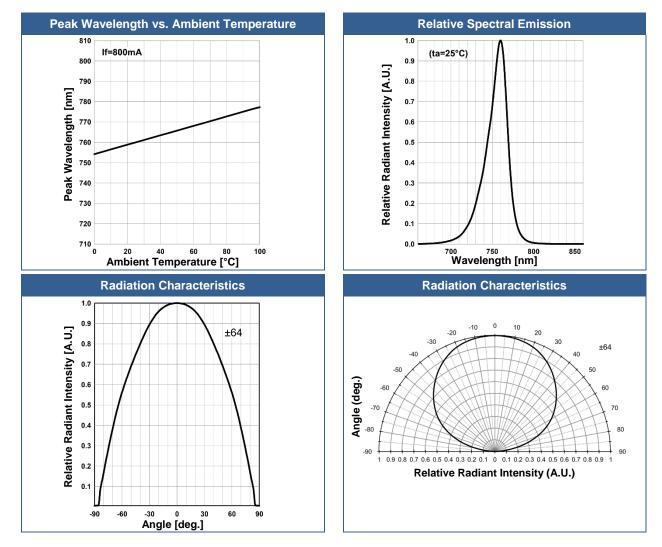
*1 duty=1%, pulse width = 10 μ s

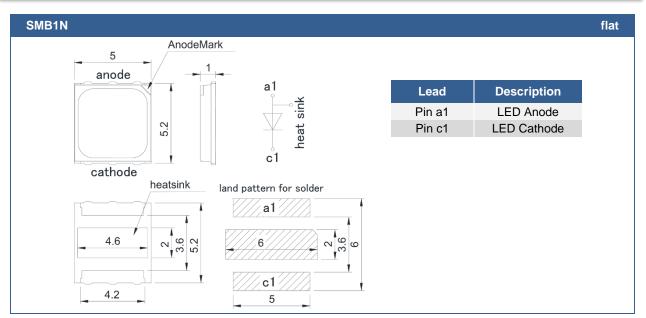
*2 must be completed within 5 seconds

Electro-Optical Characteristics (TCASE=25°C)


Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =800mA	750		770	nm
Half Width	$\Delta \lambda$	IF=800mA		25		nm
Forward Voltage	VF	IF=800mA		2.0	2.5	V
	VFP	IFP=2A		2.5		
Radiated Power *1	Po	I _F =800mA		400		mW
	F0	IFP=2A		1000		
Radiant Intensity *2	1-	IF=800mA		130		mW/sr
	I _E	IFP=2A		330		
Viewing Angle	φ	I _F =100mA		128		deg.
Rise Time	t _R	I _F =800mA		50		ns
Fall Time	t _F	I _F =800mA		100		ns

*1 measured by S3584-08

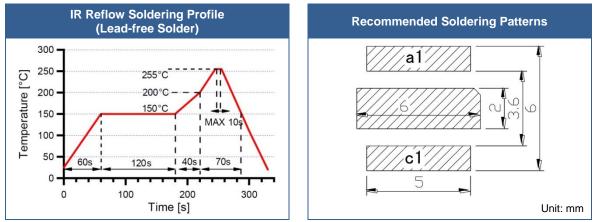

*2 measured by CIE127-2007 Condition B


Typical Performance Curves

Outline Dimensions

All Dimensions in mm

Precautions


Soldering:

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- · Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

This LED is designed to be reflow soldered on to a PCB. If dip soldered or hand soldered, its reliability cannot be guarantee.

Nitrogen reflow soldering is recommended. Air flow soldering conditions can cause optical degradation, caused by heat and/or atmosphere.

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended

DO NOT USE acetone, chloroseen, trichloroethylene, or MKS DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice