SMB1N-1450D

- Infrared High Power LED
- 1450 nm, 72 mW
- InGaAsP chip, 1000 x 1000 μm
- PA9T SMD package
- Beam Angle: ± 64°

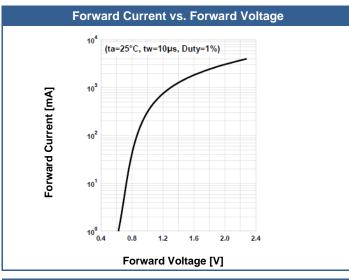
Description

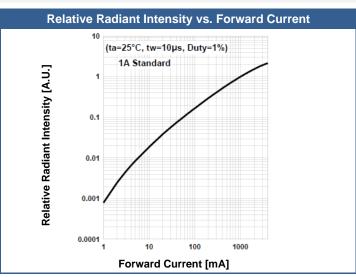
SMB1N-1450D is a surface mount InGaAsP based high power infrared LED, with a typical peak wavelength of 1450 nm and optical output power of 72 mW @ 1 A. It comes in polyamide resin SMD package (PA9T) with silver plated soldering pads (lead free solderable), copper heat sink, and silicone resin molded flat window.

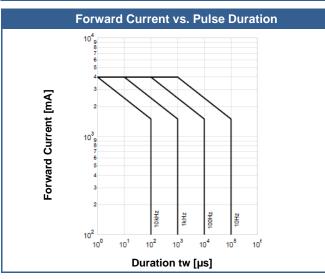
Maximum Ratings*

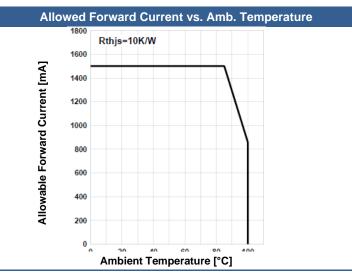
Parameter	Symbol	Va	I Imit	
Parameter		Min.	Max.	Unit
Power Dissipation	P D		3500	mW
Forward Current	l _F		1500	mA
Pulse Forward Current **	I FP		4000	mA
Reverse Voltage	UF		3	V
Thermal Resistance	RTHJA		10	K/W
Junction Temperature	TJ		120	°C
Operating Temperature	TCASE	- 40	+ 100	°C
Storage Temperature	T _{STG}	- 40	+ 100	°C
Lead Solder Temperature (t _{max} . 5s)	T _{SLD}		+ 250	°C

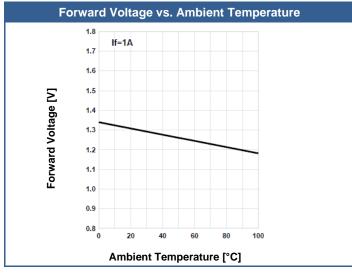
^{*}Operating close to or exceeding these parameters may damage the device

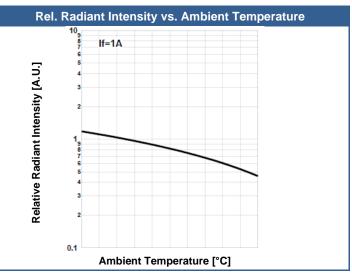

Electro-Optical Characteristics (TCASE = 25°C)

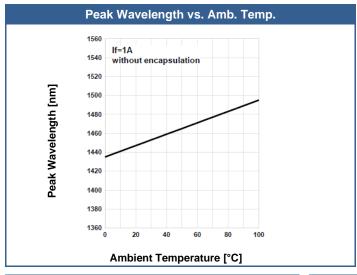

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λp	I _F =1 A	1400		1500	nm
Half Width	λ_{Δ}	I _F =1 A		110		nm
Forward Voltage	VF	I _F =1 A		1.3	1.7	V
	V _{FP}	I _{FP} =2 A*		1.7		
Total Radiated Power	Po	I _F =1 A	45	72		mW
		I _{FP} =2 A*		120		
Radiant Intensity	IE	I _F =1 A		24		mW/sr
		I _{FP} =2 A*		40		
Viewing Angle	2θ _{1/2}	I _F =100 mA		128		deg.
Rise Time	t r	I _F =1 A		90		ns
Fall Time	t f	I _F =1 A		30		ns

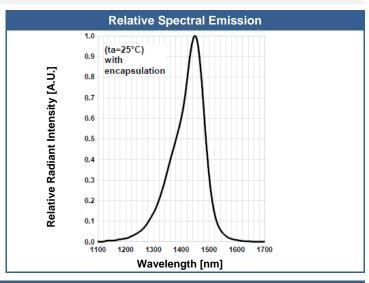

 $^{^*}$ duty cycle = 1 %, pulse width = 10 μs

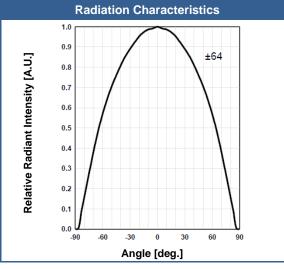

^{**} duty cycle = 1 %, pulse width = 10 μ s

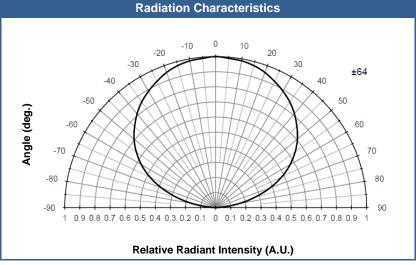

Typical Performance Curves



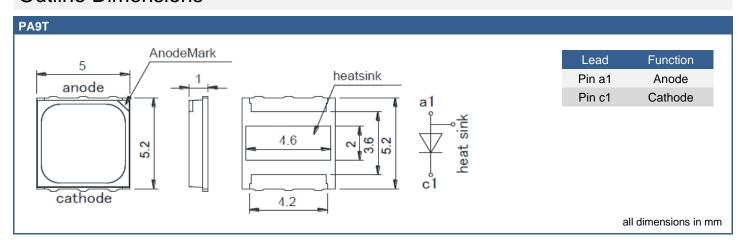


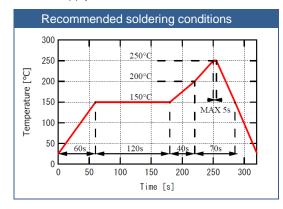


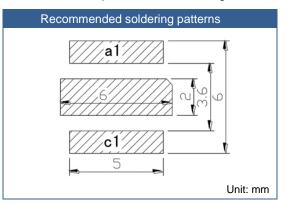




Typical Performance Curves




Outline Dimensions



General Notes

Soldering

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning

- . Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended
- DO NOT USE acetone, chloroseen, trichloroethylene, or MKS
- DO NOT USE ultrasonic cleaners

Static Electricity

- LEDs are sensitive to electrostatic discharge (ESD).
- Precautions against ESD must be taken when handling or operating these LEDs
- Surge voltage or electrostatic discharge can result in complete failure of the LED.

Radiation

- During operation these LEDs do emit light, which could be hazardous to skin and eyes, and may cause cancer.
- · Do avoid exposure to the emitted light. Protective glasses if needed
- It is further advised to attach a warning label on products/systems.

Operation

- · Do only operate LEDs with a current source.
- Running these LEDs from a voltage source will result in complete failure of the device.
- Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Storage

- The maximum shelf life of LEDs in the originally sealed aluminum bag is 12 months.
- Before opening the aluminum bag, please store it at <30 °C, <60 % RH.
- After opening the aluminum bag, please solder the LEDs within 72 hours (floor life) at 5 − 30 °C, <50 % RH.
- Put any unused, remaining LEDs and silica gel back in the same aluminum bag and then vacuum-seal the bag.
- It is recommended to keep the re-sealed bag in a desiccator at <30%RH.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice