

SMB1N-1100D

- Infrared High Power LED
- 1100 nm, 280 mW
- InGaAsP chip, 1000 x 1000 μm
- PA9T SMD package
- Beam Angle: ± 64°

Description

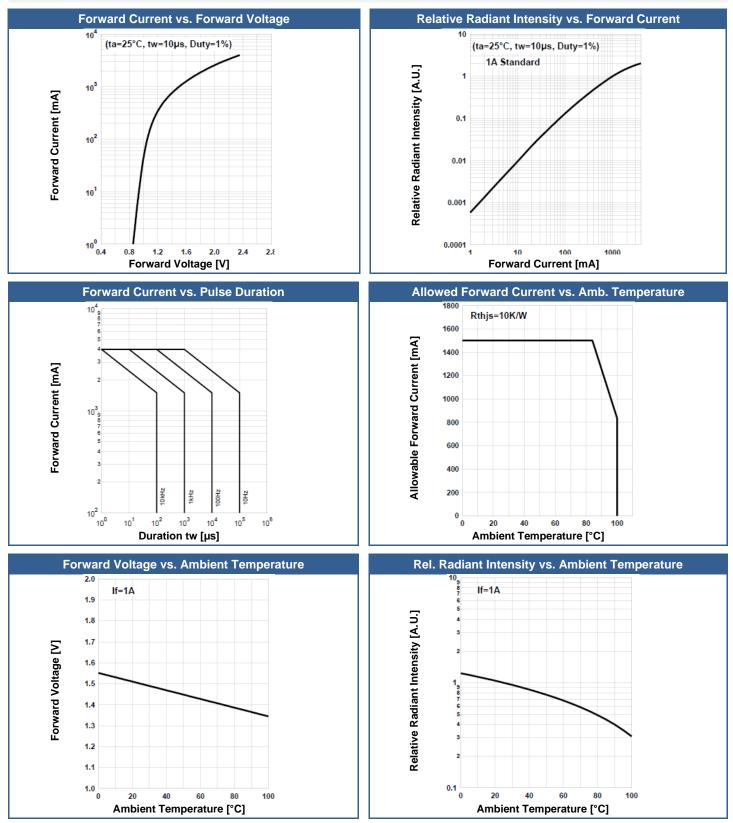
SMB1N-1100D is a surface mount InGaAsP based high power infrared LED, with a typical peak wavelength of 1100 nm and optical output power of 280 mW @ 1 A. It comes in polyamide resin SMD package (PA9T) with silver plated soldering pads (lead free solderable), copper heat sink, and silicone resin molded flat window.

Maximum Ratings*

Devenuetor	Symbol	Va	11	
Parameter		Min.	Max.	Unit
Power Dissipation	PD		3600	mW
Forward Current	IF		1500	mA
Pulse Forward Current **	IFP		4000	mA
Reverse Voltage	UF		5	V
Thermal Resistance	Rthja		10	K/W
Junction Temperature	TJ		120	°C
Operating Temperature	TCASE	- 40	+ 100	°C
Storage Temperature	Tstg	- 40	+ 100	°C
Lead Solder Temperature (t _{max} . 5s)	T _{SLD}		+ 250	°C

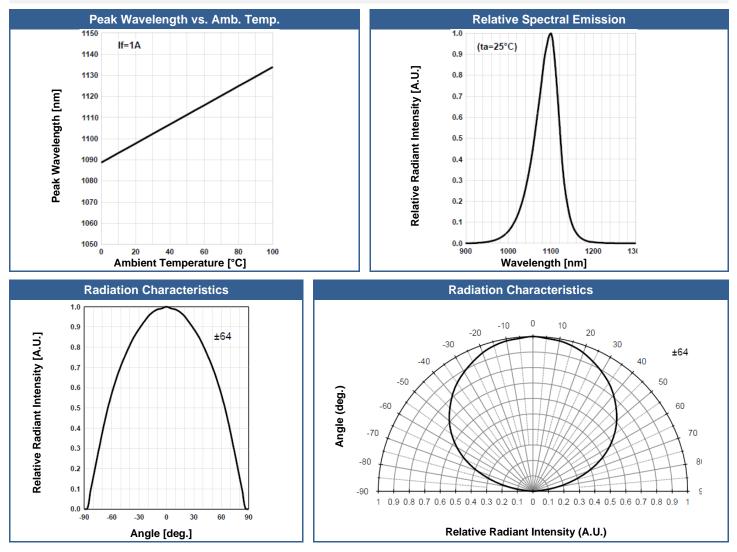
* Operating close to or exceeding these parameters may damage the device

** duty cycle = 1 %, pulse width = 10 μ s

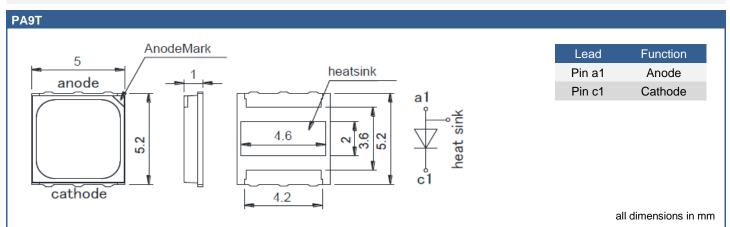

Electro-Optical Characteristics (T_{CASE} = 25°C)

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λP	I⊧=1 A	1050		1150	nm
Half Width	λ_{Δ}	IF=1 A		60		nm
Forward Voltage	VF	IF=1 A		1.5	1.8	V
	VFP	IFP=2 A*		1.8		
Total Radiated Power	Po	I _F =1 A	160	280		mW
		I _{FP} =2 A*		480		
Radiant Intensity	l _E	IF=1 A		93		mW/sr
		I _{FP} =2 A*		160		
Beam Angle	20 1/2	I _F =100 mA		128		deg.
Rise Time	tr	IF=1 A		90		ns
Fall Time	t f	I _F =1 A		30		ns

* duty cycle = 1 %, pulse width = 10 µs

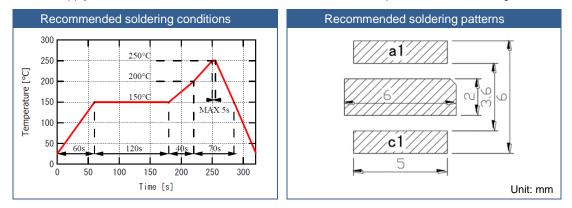


Typical Performance Curves



Typical Performance Curves

Outline Dimensions



General Notes

Soldering

- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- · Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning

- · Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended
- DO NOT USE acetone, chloroseen, trichloroethylene, or MKS
- DO NOT USE ultrasonic cleaners

Static Electricity

- LEDs are sensitive to electrostatic discharge (ESD).
- · Precautions against ESD must be taken when handling or operating these LEDs
- · Surge voltage or electrostatic discharge can result in complete failure of the LED.

Radiation

- During operation these LEDs do emit light, which could be hazardous to skin and eyes, and may cause cancer.
- · Do avoid exposure to the emitted light. Protective glasses if needed
- It is further advised to attach a warning label on products/systems.

Operation

- Do only operate LEDs with a current source.
- Running these LEDs from a voltage source will result in complete failure of the device.
- Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Storage

- The maximum shelf life of LEDs in the originally sealed aluminum bag is 12 months.
- Before opening the aluminum bag, please store it at <30 °C, <60 % RH.
- After opening the aluminum bag, please solder the LEDs within 72 hours (floor life) at 5 30 °C, <50 % RH.
- Put any unused, remaining LEDs and silica gel back in the same aluminum bag and then vacuum-seal the bag.
- It is recommended to keep the re-sealed bag in a desiccator at <30%RH.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice