

SMB1N-1050D

- Infrared High Power LED
- 1050 nm, 160 mW
- InGaAsP chip, 1000 x 1000 μm
- PA9T SMD package
- Beam Angle: ± 64°

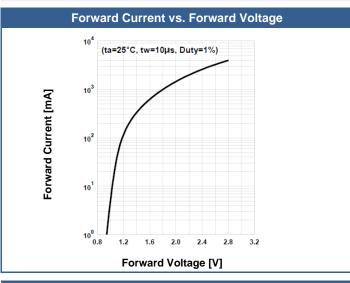
Description

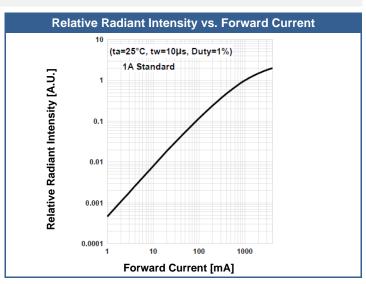
SMB1N-1050D is a surface mount InGaAsP based high power infrared LED, with a typical peak wavelength of 1050 nm and optical output power of 160 mW @ 1 A. It comes in polyamide resin SMD package (PA9T) with silver plated soldering pads (lead free solderable), copper heat sink, and silicone resin molded lens. Additional variants with different beam angles are available on request.

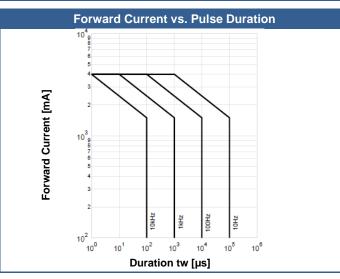
Maximum Ratings*

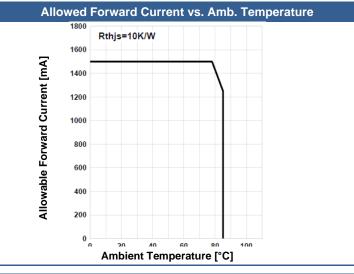
Parameter	Cumbal	Va	Hmit		
Faranietei	Symbol	Min.	Max.	Unit	
Power Dissipation	PD		4200	mW	
Forward Current	l _F		1500	mA	
Pulse Forward Current **	I FP		4000	mA	
Reverse Voltage	UF		5	V	
Thermal Resistance	RTHJA		10	K/W	
Junction Temperature	TJ		120	°C	
Operating Temperature	TCASE	- 40	+ 85	°C	
Storage Temperature	T _{STG}	- 40	+ 100	°C	
Lead Solder Temperature (t _{max} . 5s)	T _{SLD}		+ 250	°C	

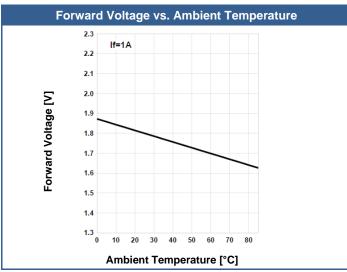
^{*}Operating close to or exceeding these parameters may damage the device

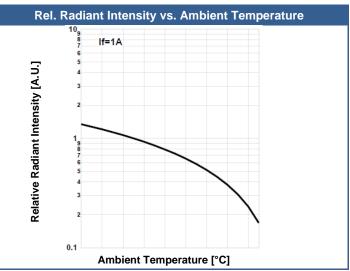

Electro-Optical Characteristics (TCASE = 25°C)

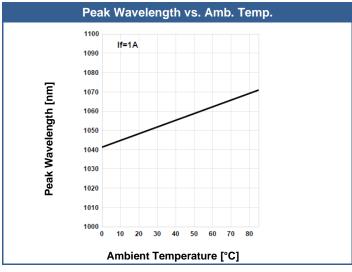

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λp	I _F =1 A	1000		1100	nm
Half Width	λ_{Δ}	I _F =1 A		55		nm
Forward Voltage	VF	I _F =1 A		1.8	2.2	V
	V _{FP}	I _{FP} =2 A*		2.2		
Total Radiated Power	Po	I _F =1 A	80	160		mW
		I _{FP} =2 A*		300		
Radiant Intensity	I _E	I _F =1 A		53		mW/sr
		I _{FP} =2 A*		100		
Beam Angle	2θ _{1/2}	I _F =100 mA		128		deg.
Rise Time	t r	I _F =1 A		90		ns
Fall Time	t f	I _F =1 A		30		ns

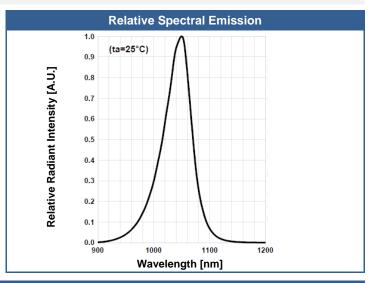

 $^{^*}$ duty cycle = 1 %, pulse width = 10 μs

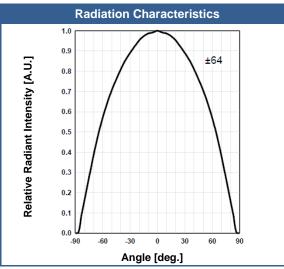

^{**} duty cycle = 1 %, pulse width = 10 μ s

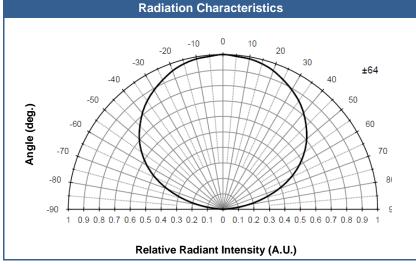

Typical Performance Curves



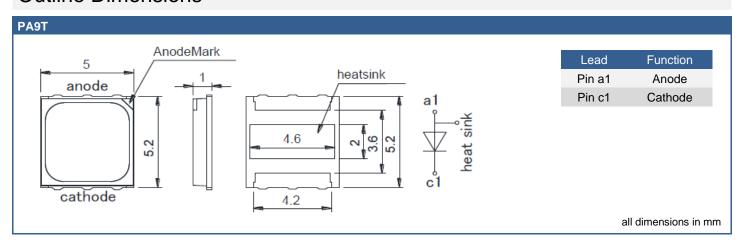


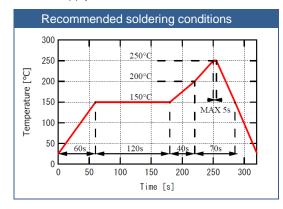


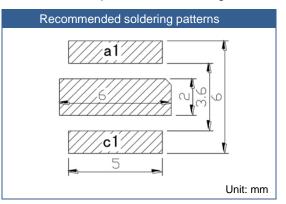




Typical Performance Curves




Outline Dimensions



General Notes

Soldering

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning

- . Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended
- DO NOT USE acetone, chloroseen, trichloroethylene, or MKS
- DO NOT USE ultrasonic cleaners

Static Electricity

- LEDs are sensitive to electrostatic discharge (ESD).
- Precautions against ESD must be taken when handling or operating these LEDs
- Surge voltage or electrostatic discharge can result in complete failure of the LED.

Radiation

- During operation these LEDs do emit light, which could be hazardous to skin and eyes, and may cause cancer.
- · Do avoid exposure to the emitted light. Protective glasses if needed
- It is further advised to attach a warning label on products/systems.

Operation

- · Do only operate LEDs with a current source.
- Running these LEDs from a voltage source will result in complete failure of the device.
- Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Storage

- The maximum shelf life of LEDs in the originally sealed aluminum bag is 12 months.
- Before opening the aluminum bag, please store it at <30 °C, <60 % RH.
- After opening the aluminum bag, please solder the LEDs within 72 hours (floor life) at 5 − 30 °C, <50 % RH.
- Put any unused, remaining LEDs and silica gel back in the same aluminum bag and then vacuum-seal the bag.
- It is recommended to keep the re-sealed bag in a desiccator at <30%RH.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice