

RLCU-440-1020

- High Power Infrared LED
- 1020 nm, 60 mW
- Ceramic SMD, 3.8 x 3.8 x 1.0 mm
- Viewing angle: 120°

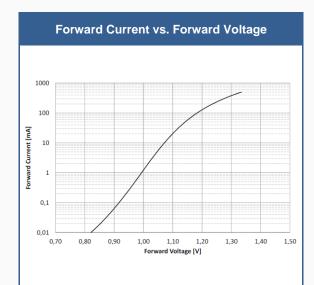
Description

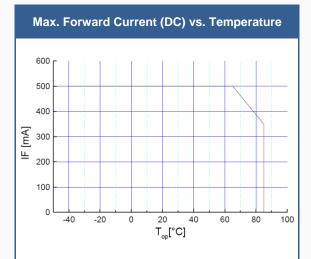
RLCU-440-1020 is a **InGaN** based surface mount infrared High Power LED with a typical peak wavelength of **1020 nm** and radiant flux of typ. **60 mW**. It comes in ceramic SMD package with silver plated soldering pads (lead free solderable) and taped in 16 mm blister tape (cathode to transporting perforation).

Ró

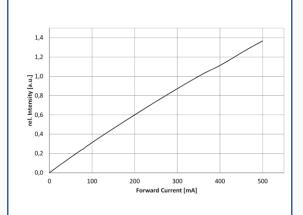
Maximum Ratings

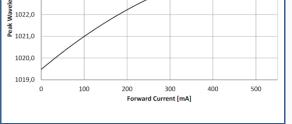
Parameter	Symbol	Val	Unit	
		Min.	Max.	Unit
Forward Current	lF		1000	mA
Forward Current, pulsed ($t_p \le 100\mu s$, T = 1:10)	IFP		1200	mA
Reverse Voltage	VR		5	V
Reverse Current	IR		100	μA
Thermal Resistance	R _{e_JC}		10	K/W
Operating Temperature	TOP	-40	+85	°C
Storage Temperature	TSTR	-40	+85	°C
Soldering Temperature (max. 3s)	TSOL		+300	°C


Electro-Optical Characteristics (T_{CASE} = 25°C, I_F = 350mA)


Parameter	Symbol	Values			Unit
		Min.	Тур.	Max.	Unit
Peak Wavelength	λ_{P}	1005	1020	1035	nm
Half Width (FWHM)	$\Delta \lambda$		40		nm
Forward Voltage	VF		1.2	1.5	V
Radiant Intensity	IE	11.2	20.0		mW/sr
Radiant Flux	φE		60		mW

Rev. 09/2019

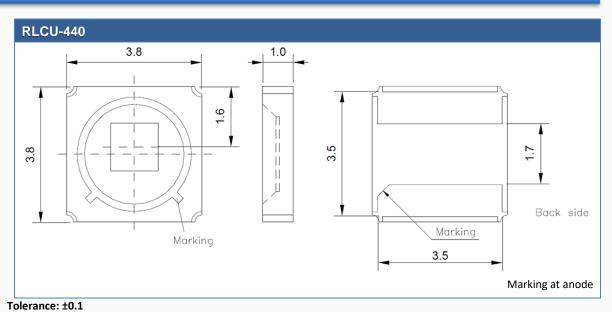

Performance Characteristics



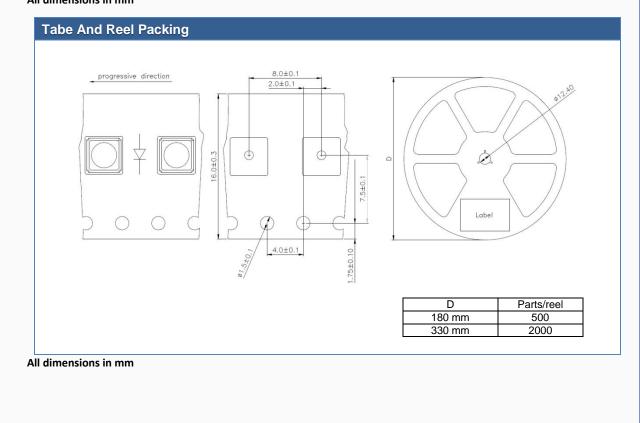
Spectrum 1,0 0,8 Intensity [a.u.] 0'0 0.2 0,0 1050 1100 1150 1200 800 850 900 950 1000 Wavelength [nm]

Intensity vs. Forward Current

1026,0 1025,0 1024,0 1023,0

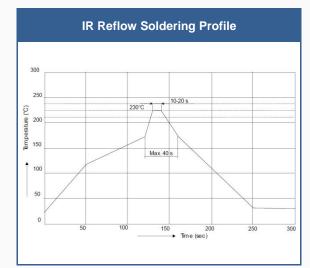

Viewing Angle

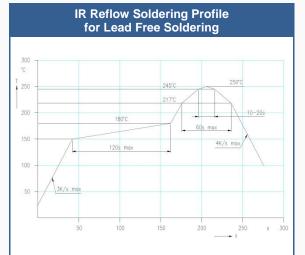
 $\begin{array}{c} 90 \\ 1,0 \\ 0,5 \\ 0,0 \end{array} \begin{array}{c} 120 \\ 150 \\ 0,0 \end{array} \begin{array}{c} 000 \\ 180 \end{array} \begin{array}{c} 000 \\ 000 \\ 000 \end{array} \end{array}$


Forward Current vs. Shift Peak Wavelength

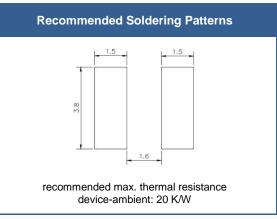
Outline Dimensions

All dimensions in mm




Precautions

Soldering:


- Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux.
- · Do not apply current to the LED until it has cooled down to room temperature after soldering

Recommended soldering conditions:

Manuel Soldering					
soldering time	max. 3 s				
soldering temperature	max. 300 °C				
power of iron	max. 25 W				

Above table specifies the maximum allowed duration and temperature during soldering. It is strongly advised to perform soldering at the shortest time and lowest temperature possible.

Cleaning:

Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended DO NOT USE acetone, chloroseen, trichloroethylene, or MKS DO NOT USE ultrasonic cleaners

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

Radiation:

During operation these LEDs do emit **high intensity light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted light. **Protective glasses are recommended**.

Operation:

Do only operate LEDs with a current source.

Running these LEDs from a voltage source will result in complete failure of the device. Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice