XSL-360-TB

- UV Through Hole LED
- 360 nm, 0.7 mW
- TO-46 Metal Can Package
- Beam Angle: ± 5°
- ESD Protection Device

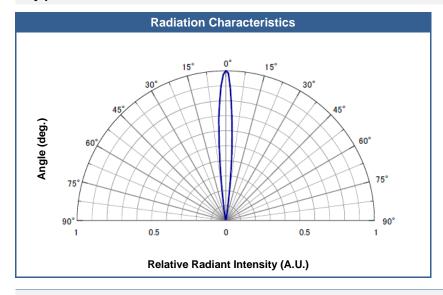
Description

XSL-360-TB is an ultraviolet LED, emitting at a peak wavelength of typically 360 nm and optical output power of 0.7 mW @ 20 mA. It comes in a **TO-46 metal can package** with **glass ball lens** and a beam angle of 10°, and features an **integrated Z-diode** against Electrostatic Discharge (ESD)

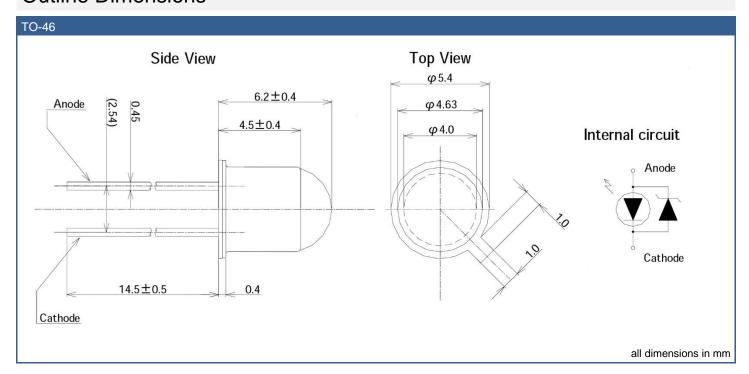
Maximum Ratings*

Parameter	Symbol	Va	Unit	
r drameter	Cymbol	Min.	Max.	5
Power Dissipation	P_D		100	mW
Forward Current	lF		25	mA
Pulse Forward Current **	I FP		100	mA
Reverse Current	I_R		85	mA
Operating Temperature	TCASE	- 30	+ 80	°C
Storage Temperature	T _{STG}	- 30	+ 100	°C
Lead Solder Temperature (t _{max.} 3s)	T _{SLD}		+ 260	°C

^{*}Operating close to or exceeding these parameters may damage the device


Electro-Optical Characteristics (TCASE = 25°C)

Parameter	Symbol	Conditions	Min.	Values Typ.	Max.	Unit
Peak Wavelength	λ_P	I _F =20 mA	357	360	365	nm
Half Width	λ_{Δ}	$I_F = 20 \text{ mA}$		15		nm
Forward Voltage	U_F	$I_F = 20 \text{ mA}$	3.2	3.6	4.2	V
Total Radiated Power	Po	$I_F = 20 \text{ mA}$	0.6		0.8	mW
Beam Angle	2θ _{1/2}	I _F =20 mA		10		deg.


www.roithner-laser.com 1

^{**} duty cycle = 10 %, pulse width = 100 μ s

Typical Performance Curves

Outline Dimensions

www.roithner-laser.com 2

General Notes

Soldering

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- · Do avoid mechanical stress, shock, and vibration
- Do only use non-corrosive flux
- Do not apply current to the LED until it has cooled down to room temperature after soldering

Cleaning

- · Cleaning with isopropyl alcohol, propanol, or ethyl alcohol is recommended
- DO NOT USE acetone, chloroseen, trichloroethylene, or MKS
- DO NOT USE ultrasonic cleaners

Static Electricity

- LEDs are sensitive to electrostatic discharge (ESD).
- Precautions against ESD must be taken when handling or operating these LEDs
- Surge voltage or electrostatic discharge can result in complete failure of the LED.

Radiation

- During operation these LEDs do emit light, which could be hazardous to skin and eyes, and may cause cancer.
- Do avoid exposure to the emitted light. Protective glasses if needed
- It is further advised to attach a warning label on products/systems.

Operation

- Do only operate LEDs with a current source.
- Running these LEDs from a voltage source will result in complete failure of the device.
- Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice

www.roithner-laser.com 3