

SPM650-800-105M-PDT-9P

- **Red Fiber-Coupled Laser Diode Module** •
- 658 nm, 800 mW •
- 105 µm Multimode Fiber
- **Build-in PD and TEC** •

Description

SPM650-800-105M-PDT-9P is a red fiber-coupled laser diode module, typically emitting at 658 nm with an output power of 800 mW. It comes in a 9-pin package with 105 µm multimode fiber and FC/PC connector, built-in TEC cooler, thermistor and photodiode.

Additional options like closer peak wavelength selection or alternative fiber connector are available on request.

Maximum Rating (TCASE = 25°C)

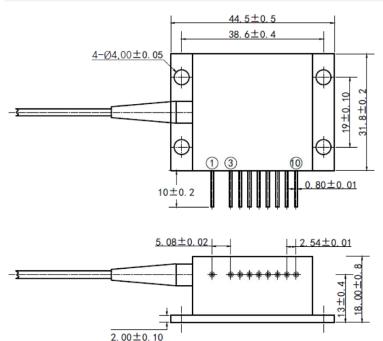
Parameter	Symbol		Unit		
	Cymbol	Min.	Max.		
Reverse Voltage	VR		2.0	V	
Operating Temperature	TOPR	+ 10	+ 20	°C	
Storage Temperature	T _{STG}	- 20	+ 80	°C	
Soldering Temperature (max. 3s)	T _{SOL}		+ 260	°C	

Electro-Optical Characteristics (TCASE = 25°C)

	Symbol	Values			11-24
, i i i i i i i i i i i i i i i i i i i		Min.	Тур.	Max.	Unit
	λP	648	658	668	nm
	Po		750	800	mW
	$\Delta \lambda$		2.0		nm
			0.25		nm/°C
	VF		2.4	2.8	V
	<i>I</i> th		0.4	0.7	А
	I _F		1.3	1.5	А
	ITEC			6	А
	VTEC			9.8	V
			10		К
		105			μm
Aperture		0.22			
*2		FC/PC			
		80			cm
	Aperture *2	λp Po Δλ VF Inh IF ITEC VTEC	λρ 648 Po Δλ VF Integration Integration Integration VF Integration Integration Integration VTEC Integration Aperture *2	Symbol Min. Typ. λ_P 648 658 P_O 750 $\Delta\lambda$ 2.0 P_O 0.25 V_F 2.4 h_h 0.4 I_F 1.3 I_{TEC} 10 V_{TEC} 10 Aperture 0.22 $*^2$ I_{TEC}	Symbol Min. Typ. Max. λ_P 648 658 668 P_O 750 800 $\Delta \lambda$ 2.0 0.25 $\Delta \lambda$ 0.25 0.25 k_h 0.4 0.7 k_h 0.4 0.7 k_h 0.4 0.7 k_F 1.3 1.5 I_{FEC} 6 6 V_{TEC} 10 9.8 I_{TEC} 105 105 Aperture 0.22 5 $*^2$ I FC/PC

*1 optional: down to ±5 nm

*2 optional: SMA905


Electrical Connection

Pin Configuration*								
PIN #	Function	PIN #	Function					
1	TEC -	6	Thermistor					
2	-	7	LD Cathode					
3	Case	8	PD Anode					
4	LD Anode	9	PD Cathode					
5	Thermistor	10	TEC +					

* subject to change

All dimensions in mm

Precautions

Safety

Caution: Laser light emitted from any laser diode may be harmful to the human eye. Avoid looking directly into the laser diode's aperture when the diode is in operation.

Note: The use of optical lenses with this laser diode will increase eye hazard

ESD Caution

Always do handle laser diodes with extreme care to **prevent electrostatic discharge**, the primary cause of unexpected diode failure. To prevent ESD related failures we strongly advise to always **wearing wrist straps**, and **grounding all applicable work surfaces**, when handling laser diodes

Operating Considerations

We strongly advise to only operate this laser diode with a current source. The current of a laser diode is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Laser diodes may be damaged by excessive drive currents or switching transients

It is advised, to operate the laser diode at the lowest temperature possible, and to never exceed maximum specifications as outlined in the datasheet. Device degradation will accelerate with increased temperature. **Proper heat sinking will greatly enhance stability and life-time of the laser diode.**

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice

